C(8) - N(3) - C(9) - C(10)	- 149.8 (6)
C(9)-C(10)-N(4)-C(11)	-163.9 (6)
C(10) - N(4) - C(11) - C(12)	145.7 (6)

The H atoms of the CH_2 and pyridyl groups were allowed to ride on the C atoms to which they are bonded. The H atoms bonded to N atoms were found on a difference Fourier map at an advanced stage of refinement and their coordinates refined.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55708 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR1007]

References

- Ahmed, E., Chatterjee, Ch., Cooksey, C. J., Tobe, M. L., Williams, G. & Humanes, M. (1989). J. Chem. Soc. Dalton Trans. pp. 645–654.
- Andreetti, G. D., Jain, P. C. & Lingafelter, E. C. (1969). J. Am. Chem. Soc. 91, 4112-4115.
- Bertini, I. & Luchinat, C. (1983). Acc. Chem. Res. 16, 272-279.
- Bombieri, G., Forsellini, E., Del Pra, A., Tobe, M. L., Chatterjee, C. & Cooksey, C. J. (1983). *Inorg. Chim, Acta*, 75, 93–101.
- Bucourt, R. (1974). Top. Stereochem. 8, 159-224.
- Goedken, V. & Christoph, G. G. (1973). Inorg. Chem. 12, 23 16-2320.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kimura, E., Koike, T. & Toriumi, K. (1988). Inorg. Chem. 27, 3687-3688.
- Raleigh, C. J. & Martell, A. E. (1985). Inorg. Chem. 24, 142-148.
- Ray, N. & Hathaway, B. (1980). J. Chem. Soc. Dalton Trans. pp. 1105-1111.
- Rosales, M. J., Toscano, R. A., Luna-Canut, M. A. & Sosa-Torres, M. E. (1989). Polyhedron, 8, 909–915.
- Solá, M., Lledós, A., Durán, M. & Bertrán, J. (1991). Inorg. Chem. 30, 2523-2527.
- Ugalde-Saldivar, V., Luna-Canut, M. A., Sosa-Torres, M. E., Rosales-Hoz, M. J., Toscano, R. A. & Tobe, M. L. (1990). J. Chem. Soc. Dalton Trans. pp. 3629–3634.

Acta Cryst. (1993). C49, 799-801

Tetrachlorobis(2-pyridone)-bis- $(\mu_2$ -2-pyridone)-dicopper

ALEXANDER J. BLAKE* AND RICHARD E. P. WINPENNY

Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 13 May 1992; accepted 22 October 1992)

Abstract

In this structure two Cu^{II} centres 3.4448 (11) Å apart are bridged asymmetrically by two 2-pyridone ligands and each is further coordinated by three terminal

0108-2701/93/040799-03\$06.00

ligands (two chlorides and one 2-pyridone). Each molecule has an approximate, non-crystallographic centre of symmetry. The molecule has two internal hydrogen bonds, each of which involves the oxygen of a terminal pyridone and the amide hydrogen of the adjacent bridging ligand with distances $N \cdots O = 2.831$ (7), $N \cdots O = 2.731$ (7) Å. Each pair of molecules is linked by two intermolecular contacts to form infinite chains: $N \cdots Cl^i = 3.244$ (5), $Cl \cdots N^i = 3.269$ (5) Å. Symmetry operation i = 1 + x, y, z.

Fig. 1. View of the molecule showing the labelling scheme used. Thermal ellipsoids are drawn at the 50% probability level, excepting those of H which are shown with arbitrary radii. The intramolecular hydrogen bonds are shown as dotted lines.

Fig. 2. Packing diagram showing the chains formed via intermolecular hydrogen bonding.

© 1993 International Union of Crystallography

_ . .

_

Comment

We have previously determined the structure of a related compound in which there are four bridging acetates and two monodentate pyrido Gould & Winpenny, 1991), and two st which the deprotonated ligand bridges atoms (Blake, Milne, Thornton & Winper

Experimental

Crystal data $[Cu_2Cl_4(C_5H_5NO)_4]$ $M_r = 649.3$ Monoclinic $P2_1/n$ a = 9.1490 (9) Å *b* = 19.371 (3) Å c = 13.7536 (14) Å $\beta = 99.061 (8)^{\circ}$ V = 2407 Å³ Z = 4 $D_x = 1.791 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$

Data collection

Stoe Stadi-4 four circle diffractometer ω -2 θ scans Absorption correction: semi-empirical $T_{\min} = 0.0615, T_{\max} =$ 0.1592 3259 measured reflections 3259 independent reflections 2064 observed reflections $[F \ge 4\sigma(F)]$

Refinement

Refinement on FFinal R = 0.0382wR = 0.0417S = 1.0512064 reflections 307 parameters Treatment of H atoms: in calculated positions with fixed $U_{\rm iso} = 0.08 \text{ Å}^2$

Table	1.	Fractional	atomic	coordinates	and	equival	lent
		isotropic	thermal	parameters	(Ų)	-	

$U_{\rm eq} = \frac{1}{2} \sum_i \sum_i U_{ii} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i.$

entate pyridones (Blake,		~			
), and two structures in	$O_{1}(1)$	ی 0 15380 (8)	0 13393	(4) 0.26566 (6)	U_{eq}
gand bridges three metal	Cu(1) Cu(2)	-0.12245(9)	0.25604	(4) 0.20300(0) (4) 0.22342(6)	0.0309 (3)
nton & Winpenny 1991)	Cl(1)	0.22508 (20)) 0.11246	(10) 0.11527 (13)	0.0333(3) 0.0427(12)
$\mathbf{a} \in \mathbf{a} \in \mathbf{a} \in \mathbf{a}$	Cl(2)	0.10486 (20)	0.08155	(11) 0.40235 (14)	0.0458 (12
R	Cl(3)	-0.20061 (22)	0.27986	(10) 0.36896 (15)) 0.0501 (13)
	CI(4)	-0.06964 (19)) 0.30869	(10) 0.08533 (13)) 0.0405 (11)
\mathcal{T}^{N}	C(1)	0.0870 (5)	0.24983	(22) 0.2860 (3) (22) 0.2860 (5)	0.032(3)
	N(1)	0.1371 (8)	0.3011 ($\begin{array}{ccc} 4) & 0.5289(5) \\ 3) & 0.3937(4) \end{array}$	0.032(4)
	C(12)	0.3738 (8)	0.3372 (4) 0.4413 (6)	0.047(5)
	C(13)	0.3385 (8)	0.4040 (4) 0.4273 (5)	0.041 (5)
-1° >">	C(14)	0.2097 (8)	0.4209 (4) 0.3644 (5)	0.041 (5)
	C(15)	0.1205 (7)	0.3710 (3) 0.3160 (5)	0.035 (4)
	O(2)	-0.3268 (5)	0.23300	(23) 0.1630 (4)	0.041 (3)
	N(2)	-0.4337(8) -0.5727(6)	0.2770 ($\begin{array}{ccc} 4) & 0.1490(5) \\ 3) & 0.1220(4) \end{array}$	0.035(5)
	C(22)	-0.6953(8)	0.2323 ($\begin{array}{ccc} 3) & 0.1329(4) \\ 4) & 0.1176(5) \end{array}$	0.030 (4)
	C(23)	-0.6799(8)	0.3624 ($\begin{array}{c} 4) & 0.1170(3) \\ 4) & 0.1187(5) \end{array}$	0.042(5)
	C(24)	-0.5376 (8)	0.3909 (4) 0.1330 (5)	0.045 (5)
	C(25)	-0.4171 (8)	0.3489 (4) 0.1489 (5)	0.042 (5)
	O(3)	0.3586 (4)	0.15715	(23) 0.3212 (3)	0.033 (3)
	C(31)	0.4649 (7)	0.1141 (4) 0.3452 (5)	0.031 (4)
Cell parameters from 42	N(3)	0.6022 (5)	0.1403 (3) 0.3629 (4)	0.032 (3)
reflections	C(32)	0.7257 (8)	0.1012 (4) 0.3882 (5)	0.041 (5)
$\theta = 11 - 13^{\circ}(\pm \omega)$	C(34)	0.5732 (8)	0.0322 ($\begin{array}{c} 4) & 0.4007(5) \\ 4) & 0.3834(5) \end{array}$	0.048 (5)
$\mu = 2.26 \text{ mm}^{-1}$	C(35)	0.4485 (8)	0.0422 (4) 0.3553 (6)	0.040(3) 0.042(5)
T = 298 K	O(4)	-0.0583 (4)	0.13817	(22) 0.2078 (3)	0.030 (3)
Diate	C(41)	-0.1355 (7)	0.0849 (4) 0.1782 (5)	0.034 (5)
$0.25 \times 0.16 \times 0.06 $	N(4)	-0.2831 (6)	0.0942 (3) 0.1488 (4)	0.030 (3)
$0.23 \times 0.10 \times 0.00 \text{ mm}$	C(42)	-0.3788 (7)	0.0423 (4) 0.1155 (5)	0.038 (5)
Pale yellow	C(43) C(44)	-0.3287(8) -0.1779(8)	-0.0226 (4) 0.1110 (5) 4) 0.1414 (5)	0.041 (5)
Crystal source: reac-	C(45)	-0.0818(7)	0.0162 ($\begin{array}{c} 4) & 0.1414(5) \\ 4) & 0.1738(5) \end{array}$	0.039(5) 0.037(5)
tion of $Cu(NO_3)_2$ with	0(10)	0.0010(7)	0.0102 (() 0.1750(5)	0.057 (5)
C₅H₄NO [−] .K ⁺ in MeOH		Table 2	Geometric	narameters (Å	°)
in the presence of		14010 2.		parameters (11,)
BaCl ₂ ; extraction with	Cu(1) = C	21(1) 21(2)	2.3021 (20)	C(21) - C(25)	1.401 (10)
MeOH/HCl; recrystalliza-	Cu(1) = C	(2)	2.2418 (21)	N(2) = C(22) C(22) = C(23)	1.357 (9)
tion from MeCN/Et ₂ O	Cu(1) - Cu(1)	D(3)	1.961 (4)	C(23) - C(23)	1.330(10)
	Cu(1)—C	0(4)	1.980 (4)	C(24)—C(25)	1.359 (10)
	Cu(2)—C	21(3)	2.2764 (22)	O(3)-C(31)	1.284 (8)
$\theta_{max} = 22.5^{\circ}$	Cu(2)—C	21(4)	2.2737 (20)	C(31)—N(3)	1.341 (8)
$h = -Q \rightarrow Q$	Cu(2) = C	((1)	1.977 (4)	C(31) - C(35)	1.410 (10)
k = 0 (20)	Cu(2) - C)(Z))(A)	1.9/4 (5)	N(3) = C(32) C(32) = C(33)	1.360 (9)
$k = 0 \rightarrow 20$	O(1) - C(1)	(1)	1.275 (8)	C(32) = C(33) C(33) = C(34)	1.334 (11)
$l = 0 \rightarrow 14$	C(11)-N	I(1)	1.367 (9)	C(34) - C(35)	1.369 (10)
3 standard reflections	C(11)—C	(15)	1.400 (10)	O(4)-C(41)	1.280 (8)
frequency: 120 min	N(1)-C(12)	1.378 (10)	C(41)—N(4)	1.360 (9)
intensity variation:	C(12)C	2(13)	1.340 (11)	C(41)C(45)	1.424 (10)
$\leq \pm 1.5\%$	C(13) = C	2(14) 2(15)	1.387 (10)	N(4) - C(42)	1.363 (9)
	O(2) - C(2)	21)	1.308 (10)	C(42) = C(43) C(43) = C(44)	1.342 (10)
	C(21)-N	(2)	1.344 (9)	C(44) - C(45)	1.375 (10)
		u(1) - C(2)	142 61 (8)	C(11) = C(15) = C(14)) 120 6 (6)
	Cl(1) - Cl	u(1) - O(1)	113.19 (12)	$C_{u(2)} = O_{(2)} = C_{(21)}$	124.0 (4)
	Cl(1)Ci	u(1)—O(3)	90.15 (14)	O(2) - C(21) - N(2)	117.7 (6)
$w = 1/[-2^2(E) + 0.00000E^2]$	Cl(1)Cu	u(1)—O(4)	92.58 (13)	O(2)-C(21)-C(25)	125.3 (6)
w = 1/[0 (r) + 0.00009r]	Cl(2)—Ci	u(1)—O(1)	103.95 (12)	N(2) - C(21) - C(25)	116.9 (6)
$(\Delta/\sigma)_{\rm max} = 0.01$	CI(2) - CI	u(1) = O(3)	94.73 (14)	C(21) - N(2) - C(22)	123.9 (6)
$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$	0(1)-0	(1) - O(3)	92.49 (14) 89.08 (17)	N(2) = C(22) = C(23)	119.4 (7)
	0(1)—Cu	(1) - O(4)	75.59 (16)	C(23) = C(23) = C(24)) 1200(7)
$\Delta \rho_{\rm min} = -0.34 \ {\rm e \ A}$	O(3)-Cu	(1)—O(4)	164.25 (18)	C(21) - C(25) - C(24)	120.0(7)
Extinction correction: none	Cl(3)-Ci	u(2)—Cl(4)	141.36 (8)	Cu(1)-O(3)-C(31)	126.1 (4)
Atomic scattering factors	Cl(3)—Cu	u(2)—O(1)	92.66 (14)	O(3)-C(31)-N(3)	116.8 (6)
inlaid except for Cu	Cl(3) - Cl(3)	u(2) - O(2)	90.45 (15)	O(3)-C(31)-C(35)	125.4 (6)
(Cromer & Mann 1068)	CI(3) - Ct	1(2) - O(4)	112.99 (12)	N(3) - C(31) - C(35)	117.8 (6)
(Cromor & main, 1700)	UI(4)	ı(∠)—U(1)	74.13 (14)	C(31) - N(3) - C(32)	123.6 (6)

Cl(4) - Cu(2) - O(2)	93.54 (15)	N(3)-C(32)-C(33)	120.6 (7)
Cl(4) - Cu(2) - O(4)	105.53 (12)	C(32)-C(33)-C(34)	117.1 (7)
O(1) - Cu(2) - O(2)	163.44 (19)	C(33)—C(34)—C(35)	122.7 (7)
O(1) - Cu(2) - O(4)	75.21 (16)	C(31) - C(35) - C(34)	118.2 (7)
O(2) - Cu(2) - O(4)	88.61 (17)	Cu(1) - O(4) - Cu(2)	104.18 (18)
Cu(1) - O(1) - Cu(2)	104.95 (19)	Cu(1) - O(4) - C(41)	123.4 (4)
Cu(1) - O(1) - C(11)	132.5 (4)	Cu(2) - O(4) - C(41)	132.2 (4)
Cu(2) - O(1) - C(11)	122.5 (4)	O(4)C(41)-N(4)	117.4 (6)
O(1) - C(11) - N(1)	117.1 (6)	O(4)—C(41)—C(45)	126.2 (6)
O(1) - C(11) - C(15)	127.0 (6)	N(4)—C(41)—C(45)	116.3 (6)
N(1) - C(11) - C(15)	115.9 (6)	C(41) - N(4) - C(42)	123.9 (6)
C(11) - N(1) - C(12)	123.5 (6)	N(4)-C(42)-C(43)	120.0 (6)
N(1) - C(12) - C(13)	120.0 (7)	C(42) - C(43) - C(44)	119.6 (7)
C(12) - C(13) - C(14)	118.6 (7)	C(43)C(44)-C(45)	120.1 (7)
C(13)-C(14)-C(15)	121.4 (7)	C(41)—C(45)—C(44)	120.1 (6)

Table 3. Torsion angles (°) with standard deviations

$C_1(1) - C_u(1) - O(1) - C_u(2) = 84.20$ (18)	Cu(2) - O(1) - C(11) - N(1) 160.9 (4)
Cl(1) - Cu(1) - O(1) - C(11) - 98.2 (6)	Cu(2) - O(1) - C(11) - C(15) - 20.1(9)
Cl(2) - Cu(1) - O(1) - Cu(2) - 91.39(17)	O(1) - C(11) - N(1) - C(12) 176.4 (6)
Cl(2) - Cu(1) - O(1) - C(11) 86.2 (6)	C(15)-C(11)-N(1)-C(12) - 2.7(10)
O(3) - Cu(1) - O(1) - Cu(2) = 173.97(21)	O(1) - C(11) - C(15) - C(14) - 177.4(7)
O(3) - Cu(1) - O(1) - C(11) - 8.4(6)	N(1)-C(11)-C(15)-C(14) 1.6 (10)
O(4) - Cu(1) - O(1) - Cu(2) - 2.40(19)	C(11) - N(1) - C(12) - C(13) = 2.0 (11)
O(4) - Cu(1) - O(1) - C(11) = 175.2 (6)	N(1) - C(12) - C(13) - C(14) - 0.1 (11)
Cl(1) - Cu(1) - O(3) - C(31) - 75.9(5)	C(12)-C(13)-C(14)-C(15) = -0.9(11)
Cl(2) - Cu(1) - O(3) - C(31) = 67.0(5)	C(13) - C(14) - C(15) - C(11) = 0.0 (11)
O(1)-Cu(1)-O(3)-C(31) 171.0 (5)	Cu(2) - O(2) - C(21) - N(2) - 162.2 (5)
O(4) - Cu(1) - O(3) - C(31) - 176.0 (6)	Cu(2) - O(2) - C(21) - C(25) 18.0 (10)
Cl(1)— $Cu(1)$ — $O(4)$ — $Cu(2) = 111.30(14)$	O(2) - C(21) - N(2) - C(22) = 179.7 (6)
Cl(1)-Cu(1)-O(4)-C(41) 73.6 (5)	C(25)-C(21)-N(2)-C(22) = -0.5 (10)
Cl(2)—Cu(1)—O(4)—Cu(2) 105.76 (15)	O(2) - C(21) - C(25) - C(24) = 179.7 (7)
Cl(2)— $Cu(1)$ — $O(4)$ — $C(41)$ – 69.4 (5)	N(2)-C(21)-C(25)-C(24) 0.0 (10)
O(1)Cu(1)O(4)Cu(2) 1.99 (15)	C(21) - N(2) - C(22) - C(23) = -0.4 (11)
O(1) - Cu(1) - O(4) - C(41) - 173.1(5)	N(2) - C(22) - C(23) - C(24) 1.7 (11)
O(3)— $Cu(1)$ — $O(4)$ — $Cu(2)$ – 11.5 (8)	C(22) - C(23) - C(24) - C(25) - 2.3 (11)
O(3) - Cu(1) - O(4) - C(41) 173.4 (6)	C(23) - C(24) - C(25) - C(21) 1.4 (11)
Cl(3)—Cu(2)—O(1)—Cu(1) 115.08 (15)	$Cu(1) \rightarrow O(3) \rightarrow C(31) \rightarrow N(3)$ 166.8 (4)
Cl(3)-Cu(2)-O(1)-C(11) - 62.8(5)	Cu(1) - O(3) - C(31) - C(35) - 13.9 (9)
Cl(4)—Cu(2)—O(1)—Cu(1) 102.98 (15)	O(3)-C(31)-N(3)-C(32) - 179.4 (6)
Cl(4)-Cu(2)-O(1)-C(11) 79.1 (5)	C(35)-C(31)-N(3)-C(32) 1.2 (10)
O(2) - Cu(2) - O(1) - Cu(1) 14.5 (8)	O(3) - C(31) - C(35) - C(34) - 178.7(7)
O(2)-Cu(2)-O(1)-C(11) - 163.4(6)	N(3) - C(31) - C(35) - C(34) = 0.6 (10)
O(4) - Cu(2) - O(1) - Cu(1) 2.00 (15)	C(31) - N(3) - C(32) - C(33) - 2.6 (11)
O(4)— $Cu(2)$ — $O(1)$ — $C(11)$ – 175.9 (5)	N(3) - C(32) - C(33) - C(34) = 2.0 (11)
Cl(3)-Cu(2)-O(2)-C(21) 65.5 (5)	C(32) - C(33) - C(34) - C(35) - 0.2 (12)
C!(4)-Cu(2)-O(2)-C(21) - 76.0(5)	C(33) - C(34) - C(35) - C(31) - 1.1 (11)
O(1)-Cu(2)-O(2)-C(21) 166.5 (6)	Cu(1) - O(4) - C(41) - N(4) = 173.8 (4)
O(4)— $Cu(2)$ — $O(2)$ — $C(21)$ 178.5 (5)	Cu(1) - O(4) - C(41) - C(45) - 5.6 (9)
Cl(3)-Cu(2)-O(4)-Cu(1) - 88.94 (17)	Cu(2) - O(4) - C(41) - N(4) = 0.2 (9)
Cl(3)-Cu(2)-O(4)-C(41) 85.6 (5)	Cu(2) - O(4) - C(41) - C(45) - 179.2 (5)
C(4) - Cu(2) - O(4) - Cu(1) = 87.87 (17)	O(4) - C(41) - N(4) - C(42) - 1/9.9 (6)
Cl(4) - Cu(2) - O(4) - C(41) - 97.6(5)	C(45)-C(41)-N(4)-C(42) = 0.5(10)
O(1)-Cu(2)-O(4)-Cu(1) - 2.37 (18)	O(4) - C(41) - C(45) - C(44) = 1/9.2 (7)
O(1)— $Cu(2)$ — $O(4)$ — $C(41)$ 172.1 (6)	N(4) - C(41) - C(45) - C(44) - 0.2(10)
O(2)— $Cu(2)$ — $O(4)$ — $Cu(1) = 178.84 (21)$	C(41) - N(4) - C(42) - C(43) = 0.4 (10)
O(2) - Cu(2) - O(4) - C(41) - 4.4 (4)	N(4) - C(42) - C(43) - C(44) = 0.5 (11)
Cu(1) - O(1) - C(11) - N(1) - 16.4 (9)	C(42) - C(43) - C(44) - C(45) - 1.3 (11)
Cu(1) - O(1) - C(11) - C(15) = 162.7(5)	C(43) - C(44) - C(45) - C(41) = 1.1 (11)

The figures were produced using SHELXTL PC (SAXI, 1990) and molecular geometry calculations performed using CALC (Gould & Taylor, 1985). Program used to solve structure by automatic direct methods: SHELXS86 (Sheldrick, 1986). Program used to refine structure: SHELX76 (Sheldrick, 1976). Reflection data were collected using the learnt profile method (Clegg, 1981) and corrected for absorption by the ψ -scan method (North, Phillips & Mathews, 1968). Refinement was by full-matrix least squares with all non-H atoms being allowed isotropic motion.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55759 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1013]

References

- Blake, A. J., Gould, R. O. & Winpenny, R. E. P. (1991). Acta Cryst. C47, 1077–1079.
- Blake, A. J., Milne, P. E. Y., Thornton, P. & Winpenny, R. E. P. (1991). Angew. Chem. Int. Ed. Engl. 30, 1139-1141.
- Clegg, W. (1981). Acta Cryst. A37, 22-28.
- Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324.
- Gould, R. O. & Taylor, P. (1985). CALC. Program for molecular geometry calculations. The Univ. of Edinburgh, Scotland.
- Mallinson, P. R. & Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- SAXI (1990). SHELXTL PC version 4.2. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Germany.

Acta Cryst. (1993). C49, 801-803

Structure of [3,10-Dimethyl-4,9-diaza-3,9-dodecadiene-2,11-dione dioximato(1 –)]-(isothiocyanato)copper(II)

TAHIR TAHIROV AND TIAN-HUEY LU

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

HUNG LUH AND CHUNG-SUN CHUNG

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300

(Received 7 May 1992; accepted 15 October 1992)

Abstract

The Cu^{II} ion is five coordinated in a distorted square-pyramidal geometry with the four N atoms equatorial and an N-bound isothiocyanate axial. It deviates from the best plane formed by the four N atoms towards the isothiocyanate N atom. The axial Cu—N distance is longer than the equatorial Cu—N distances. Comparison of the present work with other similar complexes reveals some steric effects of the monodentate ligand —NCS⁻ on the coordination geometry.

Comment

The crystal structure of bis $[\mu-3,10$ -dimethyl-4,9diaza-3,9-dodecadiene-2,11-dione dioximato(1 –)- μ -O,N,N',N'',N''']-dicopper(II) diperchlorate, [Cu-(C₁₂H₂₁N₄O₂)]₂²⁺.2ClO₄⁻ has been reported (Wang, Wang, Wang & Chung, 1990). In order to study the

© 1993 International Union of Crystallography